문제 하나 이상의 연속된 소수의 합으로 나타낼 수 있는 자연수들이 있다. 몇 가지 자연수의 예를 들어 보면 다음과 같다. 3 : 3 (한 가지) 41 : 2+3+5+7+11+13 = 11+13+17 = 41 (세 가지) 53 : 5+7+11+13+17 = 53 (두 가지) 하지만 연속된 소수의 합으로 나타낼 수 없는 자연수들도 있는데, 20이 그 예이다. 7+13을 계산하면 20이 되기는 하나 7과 13이 연속이 아니기에 적합한 표현이 아니다. 또한 한 소수는 반드시 한 번만 덧셈에 사용될 수 있기 때문에, 3+5+5+7과 같은 표현도 적합하지 않다. 자연수가 주어졌을 때, 이 자연수를 연속된 소수의 합으로 나타낼 수 있는 경우의 수를 구하는 프로그램을 작성하시오. 입력 첫째 줄에 자연수 N이 주어진다...
문제 정사각형으로 이루어져 있는 섬과 바다 지도가 주어진다. 섬의 개수를 세는 프로그램을 작성하시오. 한 정사각형과 가로, 세로 또는 대각선으로 연결되어 있는 사각형은 걸어갈 수 있는 사각형이다. 두 정사각형이 같은 섬에 있으려면, 한 정사각형에서 다른 정사각형으로 걸어서 갈 수 있는 경로가 있어야 한다. 지도는 바다로 둘러싸여 있으며, 지도 밖으로 나갈 수 없다. 입력 첫째 줄에는 수열의 길이 N이 주어지고, 둘째 줄에는 N개의 숫자가 빈칸을 사이에 두고 주어진다. N은 1 이상 100,000 이하의 정수이다. 입력은 여러 개의 테스트 케이스로 이루어져 있다. 각 테스트 케이스의 첫째 줄에는 지도의 너비 w와 높이 h가 주어진다. w와 h는 50보다 작거나 같은 양의 정수이다. 둘째 줄부터 h개 줄에는..
문제 0에서부터 9까지의 숫자로 이루어진 N개의 숫자가 나열된 수열이 있다. 그 수열 안에서 연속해서 커지거나(같은 것 포함), 혹은 연속해서 작아지는(같은 것 포함) 수열 중 가장 길이가 긴 것을 찾아내어 그 길이를 출력하는 프로그램을 작성하라. 예를 들어 수열 1, 2, 2, 4, 4, 5, 7, 7, 2 의 경우에는 1 ≤ 2 ≤ 2 ≤ 4 ≤ 4 ≤ 5 ≤ 7 ≤ 7 이 가장 긴 구간이 되므로 그 길이 8을 출력한다. 수열 4, 1, 3, 3, 2, 2, 9, 2, 3 의 경우에는 3 ≥ 3 ≥ 2 ≥ 2 가 가장 긴 구간이 되므로 그 길이 4를 출력한다. 또 1, 5, 3, 6, 4, 7, 1, 3, 2, 9, 5 의 경우에는 연속해서 커지거나 작아지는 수열의 길이가 3 이상인 경우가 없으므로 ..